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ABSTRACT

A linear, nonlocal continuum theory of dislocations is developed.

The field equations are given for the dislocation density and the stress

fields due to continuous distribution of dislocations. Green's functions

are obtained for two and three-dimensional media and an integral formula

is given for line distribution of dislocations.generalizing Peach-Koehler

formula of the classical (local) theory. Unlike the classical theory, no

stress singularities occur so that self-stress and energies of disloca-

tion loops can be calculated involving no divergences. Exact solutions

given for the line and circular distributions of dislocations verify these

expectations.
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1. INTRODUCTION

In classical (local) theory, the displacement and stress fields

due to a continuous distribution of dislocations can be calculated by

means of various surface and volume integrals once the Green's functions

for the dislocation density is known. To obtain the Greens function one

solves partial differential equations fir the stress functions. For

example, the stress due to a line distribution of dislocation is given

by the Peach-Koehler formula. One of the basic difficulties of this

theory is that the self-stress and energies of dislocation loops possess

mathematical singularities so that calculations will have to be cut-off

near the lines of dislocation or the core region.

In several previous papers (cf. 1-4), I have shown that the

solutions for the single dislocation involve no stress or energy singu-

larities at the core regions. Moreover, calculated theoretical strengths

of solids and dispersion curves for plane waves agree quite well with

those known from the atomic lattice dynamics and/or experiments. There-

fore, it is expected that the nonlocal theory will eliminate the classical

singularities for the self stress and energies of dislocation loops. The

raison d'etre of the present paper stems from the need to develop a

theory of continuous distribution of dislocations based on the nonlocal

elasticity, that can hopefully predict the physical phenomena in the

microscopic and atomic scales where classical theory fails to apply.

In Section 2, 1 summarize the basic equations of the nonlocal

£ theory of linear isotropic elastic solids. In Section 3, 1 develop
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the field equations for the continuous distribution of dislocations.

Green tensors for the Beltrami and Airy stress functions for solids of

infinite extends are obtained in Section 4. The stress fields are given

by a volume integral generalizing celebrated Peach-Koehler formula of the

classical theory. In Section 5, I derive explicit expressions of the

stress fields for the uniform distributions of screw dislocations along

a straight line segment and along a circular loop. The exact formulas

obtained for these cases contain no singularities, justifying our expec-

tation. Section 6 contains calculations of stress fields and a discussion

of the reduction of yield stress with the dislocation pile-up.

The simplicity and the aesthetics of these results, I believe,

justifiably indicate the power and the potential of the nonlocal theory in

the treatment of the physical phenomena with characteristic lengths in the

microscopic and atomic scales.

2. BASIC EQUATIONS

The linear theory of nonlocal elasticity is based on Cauchy's

equations of motion

(2.1) tkik + P(fk - = 0

and the integral constitutive equations

(2.2) tk (x't) a I ck£i(x'-x) e mn(x') dv(x')

V

where t, , fk , u£ and ex are respectively, the stress

tensor, the mass density, the body force density, the displacement vector

and the linear strain tensor defined by

(,
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(2.3) ek = T (U, * U,k)

In (2.2), cktmn is a function of the vector x'-x and the

integral is over the volume of the entire body. Consequently, the stress

at a point x depends on the strain at all points x' of the body.

Throughout this paper, we employ rectangular coordinates xk

k=1,2,3, and use the usual summation convention on repeated indices. Also

a superposed dot indicates the time rate and aj. index followed by a comma

partial differentiation with respect to xk-, e.g.

S auk  auk
uk = UT-kk 7 =

The kernel Ckkmn possesses certain symmetry regulations and it depends

on a length scale. For isotropic solids (2.2) takes the simple form

(2.4) tkk(X,t) = jCL(x'-xj) akZ(ZX) dv(x')

V

where 0 is the classical (local) stress tensor given by the Hooke's law

(2.S) k9 = X err 6 kZ * 2 i ekk

and a is a function of the distance 1x'-x . It also depends on a

length scale c that may be taken to be proportional to an internal charac-

teristic length a

(2.6) c a e0 a

where e0  is a non-dimensional material property which may be determined

by one experiment or comparison with calculations based on lattice dynamics
"3-S

The internal characteristic length a may be taken as the lattice parameter
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for single crystals, granular distance for amorphous materials, and the

average distance for fiber composites. As c- 0 , kk -+ k£ and (2.4)

reduces to Hooke's law tkk = k * Thus, a(lx'-xl) is a Dirac delta

sequence.

In several previous papers3 '5 , I have discussed the properties of

a(Ix'-xl) and gave representations which lead to excellent agreement

with known atomic calculations on dispersions of waves3'6 in the entire

Brillouin zone and on theoretical strengths of solids. 4  For example, for

the two-dimensional case, an appropriate kernel is

(2.7) a(jxI,E) = (2Tr) -l

which satisfies the equation

(2.8) (1- 2 = 6(lx'-xl)

vanishing at infinity. In fact, for the infinite solid, it can be shown

that a is the Green's function satisfying (2.8) in three-dimensions also.

Using (2.8) in (2.4), we obtain

(2.9) (1 - E 2V')tk = kZ

By means of (2.1) and (2.9), we then find that

(2.10) ( ")uk,kk * V,kk (1 - &7V )(Pfk - 0u Z 0

f
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These are the partial differential equations for uk, replacing Navier's

equations of classical elasticity. For the static case and vanishing body

forces, this reduces classical Navier's equation

(2.11) (X ) Uk,kZ * I UZkk = 0

However, note that the stress field is determined by solving (2.9)

under appropriate boundary conditions.

3. CONTINUOUS DISTRIBUTION OF DISLOCATIONS

Continuous distribution of dislocations is envisaged as follows:

A small neighborhood n(x) of x in a distorted body of volume V , may

be relaxed to a small neighborhood N(X) of the image of X of x, in

an undistorted (or a natural) configuration V , by releasing constraints

exerted to n(x) by the rest of the body. A line element dx at xEn(x)

can be expressed in terms of its image dXE N(X) by

(3.1) dx = A dx

where A(X) is called the elastic distortion. It is assumed that A(X)

is continuously differentiable and possesses uniqie inverse so that

-1
(3.2) dX = A dx
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Consider a smooth surface S in V bounded by a closed curve C The

true Burger's vector b of the dislocations piercing through S is de-

fined by

(3.3) b = dX = A dx = ands

C C S

where n is the unit normal to S , the positive sense of C being

counter-clockwise when sighting along n. Here a is called the true

dislocation density

-l -l

(3.4) a = curl A or ajk =kmn Ajn,m

For small distortions, we can write

-i

(3.5) Akk = 
6 kk ' ' AkZ 6k- k

so that

(3.6) ajk = E k m jm, n

From this, it follows that

(3.7) a k,k = 0

006
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The linear strain tensor eki and rotation tensor rk£ are given by

1 1
(3.8) ekZ = + +  ), rkZ = - a ,)

2Zk kkrZ 2 k2k - k,k

The strain incompatibility is expressed by

(3.9) Cijk Xm e in,jm = ik

where qkk is called the incompatibility tensor and is given by

1
(3.10) Tk2 = T ('kmnan£,m + ZmZnankm)

All these results are well-known in classical theory (cf. Ref. [7]).

In nonlocal elasticity, the strain tensor can be solved by using

(2.9) and (7.5)

(3. 11) ek C272 t-
1 - 2V2)_(tkz £trk(3 1 kk =211 -Z I+V trr k£)

where v = X/2(X+) is the Poisson's ratio. Substituting (3.11) into

(3.9), we obtain

(3.12) ( - V 2 ) [V tk£*~ + 1 (trr 2 t 6  2
(tYV rr,kk Vrrkk)]=2 nk

These equations must be solved under the conditions of equilibrium

(3.13) tkik = 0

• i - , - I I I I I I I : I- . .. " : ¥ - - ... ..m
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Following Kr~ner's approach , modifying the Beltrami solution of (3.13),

we take

(3.14) tkk/ 2 W 2 2XkZ + i-1 (Xrr,kZ - V2X r 6k

where the symmetric stress function XkZ is subject to

(3.15) Xkki k 0 .

Substituting (3.14) into (3.12), we obtain

(3.16) (I - E272) V4XkZ = 'kZ

Thus, given the dislocation density function ak , through (3.10), we

calculate IkZ . The solution of (3.16) gives X k and (3.14) the

stress field.

Equation (3.16) is singularly perturbed and as expected in the

limit E-0, (3.16) reduces to the classical equation for XkZ .

To obtain the solution of (3.16), we must find the Green's Tensor

Gki n which satisfies

(3.17) (1 - c ) 7 G 6(x-Q) 6k 6Mn

The solution of (3.16) is then given by

(3.18) I GkZ(x,) 1 (")dv(E)

iv
subject to supplementary conditions (3.15).

|-r -
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4. GREEN'S TENSORS AND STRESS FIELDS

Here we determine Green's tensors for two and three-dimensional

bodies of infinite extends.

(i) Three-Dimensional Infinite Space

The operator V2 is invariant under rotations of coordinates. For

the infinite space, we look for a solution of (3.17) which depends on

lx-5j only, i.e.,

(4.1) (1 - 2 2 ) V4 G = 6(x-

Since the operators 1-c2V 2 and V4 are commutative, we set

(1 2 V2 ) G = H
(4.2)

4i
V 4 11 6(jx-&!)

For the infinite space, H is given by

(4.3) H I - x- I1/8T

In spherical coordinates using

V 1 (r2d
2 dr

r

we obtain for G
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(4.4) G(Ix- f) = 4 x- l exp(-Ix- l/E) -8 E # 0

(4.5) G(jx- I) E= 0

Here Go is an arbitrary constant which may be chosen G = 1 to render

tkk regular at x= . The solution of (3.16) for the infinite solid

is given by

r

(4.6) XkZ - J Ti- nkZ ( ) dv( )

V

which satisfies the conditions (3.15) on account of (3.7) and (3.10). If

we substitute from (3.10), this gives

I r aG

(4.7) xk(X) = f .ijk I aj ) xi dv( )

V

where we used the Green-Gauss theorem and set a surface term at infinity

to zero.

From (4.7), one can obtain various special cases involving surface

and line distributions of dislocations. For example, for a line distribu-

tion of dislocation along a closed curve C , we obtain
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(4.8) Xk 1 -C b * dt + 1E b 2 dRkk 2kij j TQj i x k

CC

where b. is the Burger's vector per unit length of C and dki is

the element of the arc.

Upon substituting (4.8) into (3.14), we obtain the stress field due

to a line distribution of dislocations

1 1 2
(4.9) tk /2 2 Eribj b [VG, (6 d + 6 dik)

C

i--- (G~i V G 6k2)dir]

7
This result is identical to the Peach and Koehler formula with modifi-

cation that here G is the nonlocal Green's function (4.4) with c 0.

As we shall see, the most interesting new feature of (4.9) is that, with

G given by (4.4), at a point on the dislocation line C , the stress is

finite so that the self-stress and energies of dislocation loops can be

calculated, free of infinities.

(ii) Two-Dimensional Infinite Plane

In the case of the plane strain, introducing the Airy's stress

function O(xlx 2 ) by

(4.10) t = ,22 t2 ,1 t1 ,12



12

we obtain an equation replacing (3.16)

(4.11) (1 - E2 V2 ) V44 = 2uT

where

(4.12) I = TI3 3 
= a2 3 , 1 - a1 3 ,2

a23 = a21,2 " 22,1 ' 13 a 11,2 a 12,1

depend on x and x2  only.

Green's function in this case, can be found similar to decomposition

(4.2) with 2 given by

1 d- (r
d

r dr dr

Hence,

(4.13) G(Ix-I) r .K (I c) -= " 8( n( -IE) , E 0
7T0 - Znf-E-) 8T 20

( -0 - £n(x-U
(4.14) G(Jx- J) S -8r knI-& E 0

where K0 (z) is the modified Bessel's function. Again, we take G0 =1

to render tkk regular at x= .
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Airy's stress function is obtained to be

r

(4.15) 4(x) = 2p J [G 1 a2 3( ) - G 2 a 1 3 ( ) ] ds

S

where we used the Green-Gauss theorem and set a line integral to zero at

infinity. For a line distribution of dislocations in the x3 = 0- plane,

we obtain

r

(4.16) P(x) = - 2j J [G, 1 b2 (E) dE1 + G 2 bl( ) dE2]

C

The stress field follows from (4.10)

(4.17) tll = - 211 (G 1 2 2 b2 d 1 + G 222 b1 d 2)=1 - , 122 2 d 1  22 b1 d 2 )

t 2 2 = - 2 ' I ( G , I 1 1 b, l + G 2 1 1 b ,'

t = 42 2 (G 1 1 2 b2 d 1 + G,2 12 b1 d 2)

C

(iii) Anti-Plane Strain

In the case of anti-plane strain, equations of equilibrium are

satisfied if

(4.18) t 2  t2 3  -

13' x2  23 ax1

. . .
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and we obtain

(4.19) (1 - Ez72) 72 = a.33

where

(4.20) a33 = a 31,2 a 32,1

Green's function for this case, is obtained to be

(4.1) (Ix~i) - ~ [Z(Ix~/c + 0(~-~IE21T

(4.22) G(Ix-'I) -L E 0
21T"

The stress field is given by

(4.23) t = 1 G 2 b( ) df1 d 2

t~ = -23 J G 1 b(s) d I dE2
S

For a line distribution of dislocations on the plane x3 =0 , we have

(4.24) t13  = j G,2 b(&) d, t2 3  :-J G,1 b(&) dk

C C
In plane polar coordinates (r,8 ), the stress field is given by
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(4.25)

t = i! r B( ) dZzr jr a6~
C

te = - Lj b( ) dX

C

S. UNIFORM DISTRIBUTIONS OF SCREWS

Here we calculate the stress field for two different uniform line

distributions of screw dislocations:

(i) Screw DisZocation AZong a Straight Line

Consider a line distribution of screw dislocations of constant

Burger's vector along a straight line segment Ixl< , x2=x3=0 . Green's

function is given by

) G(jx-) 1 [in (PIE) + K (QIc) ]
0

where

(5.2) p = 2(x _ +)2  2

We can evaluate t23  given by (4.24) immediately since

G,E -G/ax - GI

and we have
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(5.3) t23 = ib [ G(It - 1) - G(12 + i)

Explicitly,

(54 = b {n 7 [(XiZ) +X 2 2~ + K.-V/(X -Z) 2+X2/ ]
(5.4) 3 2Tr X +Z)2 + 2  2

-K0 -/(x1 +Z)2+x2
2  E

Along the line of screws, this gives

(5.5) t23(XlO) = - R {n () + K X(!x-Z;/c)- Ko(}Xl+ZI/E)

Calculation of t13  is complicated. However, it is easy Lo see that

(5.6) t13(x1 ,0 ) - 0

Unlike the classical case, t23 (x1 ,O) has no singularity at the end

points x1 = ± Z of the screw line. In fact, we have

(57) t23(±
Z ,O) f ± -. 2 4n(Z/E) + K (2Z/E)]

for 2.'>> 1 , we have the asymptotic value

(5.8) t23 (±X,0) + [Zn,'/e) + (7c/4Z) exp(-2Z/c)j

p
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where the second term can also be neglected as compared to the first one

for large 9/ E.

(ii) Uniform Distribution of Screw Dislocations Along a Circle

Suppose that in the plane x3 = 0, there is a uniformly distributed

screw dislocationsalong a circle of radius R. In plane polar coordi-

nates, we have

(5.9) xI = r cos 8 , 2 = r sin ,

EI = R cos , 2 = R sin

Ix - &I r 2 + R 2 2r R cos (0-e) ]2

Greens' function is given by

(5.10) G (fx - &J) = - -2- [n(jx - + K --

To calculate the stress field tzr and tze we must evaluate two integrals

21+e
(5.1) n { [r2 +R - 2 r R cos (€-0)] de

e

(5.12) 2K [r2 + R 2 r R cos (o-e) }d



To evaluate (.5.11), we write

(5.13) in r 2. + R- 2 r R cos (4e] Z n( Jrt+I)

+ Z n (1-cs 0Cos2  )

where

(S.14) =t 4 r R/ (r + R) 2 e=

The second term in (5.13) can be integrated by writing x =cosgg,2) and

consulting Ref. 9, p. 562, No. 38. Consequently

(5.15)t ki= { 2 rn(r/:) r >R

To evaluate 1 2 # we employ the integrals 6.684 on p. 741 of Ref. 9, and

note that

K (z) iTi [J (iz) iN ()

where J0and N 0  are zero order Bessel functions. The result is

{27 1 0(R/) K 0(r/c) , r >R

2 27r 1 0(r/c)K (R/E) , r <R

Consequently,



,27rG1T § ti (r/E) + 1 0(R/e-) K 0(r/-), r>R

(5.7)I J (I-~ di= ~in (RIE) + I (/)K (R/E), r(R
0 0 0

The stress field is given by

bR al
(518 zr r 76

tze ~ ~ jjR

PO b R I (r/E) K(R/E) ,r'ZR

1 0

In the special case when R -0 and 2 T Rb = bo we obtain

(5.19) t jib 0 rE

which is identical to our previous result for a single screw dislocation

having Burger's fector o



20

6. STRESS DISTRIBUTIONS

Here, I present some numerical results on the stress distributions

for the cases discussed in Section 5 and establishes a fracture criteria

based on the maximum shear stress,.

(i) Single Screw: The shear stress given by (5.19) may be expressed

in non-dimensional form:

(6.1) Te(p) = (27E/b) tze I -llK 1 ()]

where

(6.2) p - r!

The stress field given by (b.1) is displayed graphically in Fig. 1. It has

no singularity at p =0 . In fact, T6(p) vanishes at 1 =00 in contradic-

tion to the classical elasticity solution which gives infinite stress at o= 0.

The maximum stress occurs at p =1.1 and is given by

(6.3) tOe max

If we write h =c/0.3993, this agrees with Frenkel's estimate of the theore-

tical strength of single crystals, based on atomic considerations (cf.,

Kelly [101, p. 12). In fact, if we use e = e0a= 0.39 a , which is obtained

on the basis of matching of the dispersion curve predicted by non-local elas-

ticity and the Born-Kirman lattice model3, we find for the single aluminum

crystal

(



21

(6.4) tc/ = 0.12 {Al: [1113 < 10 > I

This is very close to the theoretical strength t y/ = 0.11 based on

atomic models.

(ii) Screw Dislocations Along a Straight Line Segment: Even single

crystals contain many dislocations. For a uniform distribution of screws

along a line segment Xl <z , x2 -x3=0 , the shear stress given by

(5.5) may be written in non-dimensional form

ix+ 1
(.) T, = t 2 /td Z n - + K0 [(y¥x+l i ) K0 (ex-l )

where

(6.6) td = ub/2- = ub 0N/7 , x =X y

Here b0  is the atomic Burger's vector and N is the total number of

dislocations over a distance Z.

The distribution of the shear stress (6.5) as a function of x is

shown in Fig. 2 for various values of y . Behavior of T, is governed

basically by the first term in (6.5) except near x=1 . At x 1 , we

have

b0N _n "(6.7)

The value of T 2(1) is very close to the maximum stress for 5 > 3
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(cf. Table 1). For a single atomic dislocation according to (6.3), we

have the theoretical strength

(6.8) tc  = 0.3993 20--

Combining (6.7) and (6.8), we obtain

(6.9) td =/t N n-

y y 0.3993

dwhere we set t,3(l) =t = the yield stress for the distributed dis-
3 y

locations. This gives the shear stress reduction due to the presence

of 2N dislocations distributed uniformly along a straight line segment

of length 2Z . Since td < tc, the maximum number of dislocations is

given by

( 0) Nma x  = 0.3993 Zn

For -Y =4.02 x 10 , this gives N = 1514 , which may be conservativema.x

since the distribution is not generally uniform but in an inverse pile-up

configuration

(iii) Uniform Distribution of Screws Along a Circle: In this case,

the stress fields given by (5.18) may be expressed in non-dimensional form

L - K I0 (K) KI(KC) I>

T te/l T

KK() 1i(c) 1 < 1

--------------------------------s--
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where

(6.12) p r/R , =R/

T as a function of p , for various values of K , is displayed in

Fig. 3. For value of K > 50, the maxima of T occurs near p = 1

The locations and values of T are given in Table 2.max

If b0 is the atomic Burger's vector, then

(6.13) 2Tr Rb = N b 0

where N is the number of dislocations on the dislocation circle with

radius R. Using (6.8), (6.12) and (0.13), we obtain

(6.14) t c = N T
, y 0.3993 K

According to Fig. 3, 0.324 < T < 1 . Consequently,: ' - max -•

(6.15) N/1.2 K < t dy/ty < N/0.4 <
-y y~

For perfect crystals with : = 0.39 a , this gives approximately

(6.16) 0.3 Na/R < t t < Na/R
- y Y

indicating reduction of the yield stress with the presence of large

number dislocations uniformly distributed along a circle of radius R.

B



Table 1 Maximum Shear Stress and its Location

(Line Segment)

y = 1 1.5 2 3 5 10

x = 1.446 1.197 1.103 1.039 1.000 1.000

T 2mx=0.7478 1.0501 1.3008 1.6851 2.3026 2.9957

Table 2 :Maximum Shear Stress and its Location

(Circle)

= 1 2 3 5 10 s0

Q 1.8 1.5 1.4 1.3 1.2 1.1

T = 0.3243 0.4836 0.5688 0.6630 0.7688 0.9058
max
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